Cryptography

1.1 Course Number: CS430

1.2 Contact Hours 3-0-2 Credits: 11

1.3 Semester-offered: 7

1.4 Prerequisite: Computer Network

1.5 Syllabus Committee Member:

2. **Objective:** The objective of the course is to present an introduction to Cryptography, with an emphasis on how to protect the information security from unauthorized users.

3. Course Content:

Unit-wise distribution of content and number of lectures

Unit	Topics	Sub-topic	Lectures
1	Introduction	Threats, vulnerabilities and attacks. Authentication, confidentiality, integrity and non-repudiation in data communication, Mathematical Tools for Cryptography, Classical Cryptosystems	8
2	Private key cryptosystems	Stream and Block cipher, Feistel Cipher, DES, AES, RC4, Mode of operations	9
3	Public key cryptosystems	Knapsack cryptosystems, RSA; Attacks on RSA, Diffie Hellman Key Exchange, Discrete Logarithm problem, ElGamal cryptosystems, Elliptic Curve cryptosystems	10
4	Cryptograph ic Hash function and authentication	Properties and applications of the cryptographic hash. SHA-1, MD5, MD5, SHA-512, Message authentication Code (MAC) and the digital signature.	9
5	Key management	Key management, digital certificates and the Public Key Infrastructure (PKI)	5
		Total	41

4. Readings

- 4.1 Textbook: Cryptography and Network Security B.Forouzan. Tata McGraw Hill.
- 4.2 Reference books:
- 1. Cryptography and Network Security Principles and Practices, W. Stallings, Pearson Education Publishers
- 2. Several papers from conferences, magazines and journals

5 Outcome of the Course:

- Have a broad understanding of Cryptography course.
- Have a high-level understanding of cryptographic based different applications and their functionality.
 - Be able to model secure applications based on the knowledge of cryptography.